Hello,
The reason there is no 'suggested values' for the threshold of this function block is that it's a universal solution which you may tweak depending on your setup. Though I haven't really used the analog valves (just the CAN ones) but I've seen my fair share of analog signals flowing through harsh environments. As I said before - it all boils down to what exactly is your final setup.
Let's say you build a tractor. You typically start off with creating a control system for that machine in your office, on a table. Lots of room, wires separated, no external 'noise'. Now to take what you've made and put in into a newly manufactured unit. I honestly doubt you'll get the same functionality on a real life machine. Analog signals are tricky, voltage signals are even trickier. It may be enough if someone put the valve control wires next to main power cables to make your output voltage jump like it's the 80s disco era once again. That's where the threshold kicks in. You monitor how your signals behave on a machine and adjust the control system easily, without much hassle. This being said, I doubt you'll find anyone capable of telling you, what 'optimal' values of this specific threshold are for your system (considering you haven't told what it is - but regardless...). Each system is different, and each unit from the same line may (or may not be) be different. However since we're talking dead band here, I see no way of any optimization by simply tweaking the deadpans values. It depends on what you're after: execution time, more error detection, smaller program? You may cut a 1ms off if you create your own "driver" for the valves but.... you have to know what you’re doing and frankly... I doubt you'll see any real improvement. After all we're talking analog signals here - nothing more than setting up the controller's output correctly - that's all.
To sum up:
- There are no "suggested values" because it's an analog signal - susceptible to change depending on the environment.
- Using the above, 10% is definitely a good value. Change it to 0 and you'll see what will happens - your system will become jumpy.
- There are no suggested data for spools because you have different PVG units which may be equipped with different spools (5l, 10l, 100l, etc.) yet in the end this means nothing because you connect the PVG to some sort of an actuator and THAT is what influences the way the machine works. SD can't suggest what's best for any possible setup.
Best regards,
Rafa? Typiak